2018/09/06 14:41:45

Исследования в сфере искусственного интеллекта

.

Содержание

Основная статья: Искусственный интеллект

Хроника исследований

2017

На исследования в сфере ИИ в России потрачено 23 млрд руб за 10 лет

Весной 2017 года компания SAP провела исследование[1] в области разработки проектов с использованием искусственного интеллекта в России.

С 2007 года и по 2017 год в России государственные и бизнес-структуры профинансировали 1386 научных проектов, посвященных искусственному интеллекту. Большая часть проектов (1229) являются некоммерческими – они проводятся в рамках федеральных целевых программ или оплачиваются различными фондами. Это демонстрирует, что российский бизнес пока что в меньшей степени заинтересован в разработке и использовании искусственного интеллекта в своих проектах.

За десять лет на исследования и разработки в области искусственного интеллекта было выделено около 23 млрд. рублей. Объёмы госфинансирования уступают другим странам – например, в США ежегодно из госбюджета выделяется около 200 млн. долларов на исследования в области искусственного интеллекта. Стоит также отметить, что уровень финансирования в России является невысоким с учётом количества проектов и общего числа задействованных научных сотрудников (от 6 до 10 тысяч человек).

Лидеры по объёму государственного финансирования – проекты для госсектора, транспортной отрасли, обороны и безопасности. Это свидетельствует, что в России прежде всего поддерживают проекты, где ожидаются результаты с быстрым применением на практике. Например, анализ данных и различные системы распознавания помогают оптимизировать логистические и транспортные проблемы. Текущие геополитические задачи также определяют острую потребность в интеллектуальных системах для модернизации оборонно-промышленного комплекса. Тематическими лидерами по вложениям со стороны государства являются проекты по анализу данных, системы поддержки принятия решений и распознавания изображений и видео (последняя тема востребована и в коммерческих проектах).

В России существуют несколько ВУЗов, научных и коммерческих организаций, которые являются лидерами по числу проектов и финансированию в разных сферах:

  • В сфере анализа данных лидерами являются МГУ (17 проектов) и Университет ИТМО (19 проектов)
  • Системы поддержки принятия решений – Университет ИТМО (27) и Московский Экономический Институт (12)
  • Распознавание изображений и видео – Институт систем обработки изображений РАН (17) и Южно-Российский государственный университет экономики и сервиса (13)
  • Распознавание текста и речи – НИИ «Прикладная семиотика» (9) и Центр речевых технологий (9)
  • В России существует большой потенциал в сфере подготовки квалифицированных специалистов для проектов с ИИ. Согласно исследованию SAP, в 286 вузах имеются соответствующие магистерские программы, около 50 тыс. студентов обучаются по 65 специальностям, связанным с анализом данных, машинным обучением, распознаванием речи и изображений, компьютерной лингвистикой и др. За последние пять лет подготовку по этим программам прошли более 200 тыс. человек.

Топ 30 организаций по объемам финансирования, 2014-2020, млн. р.
Отраслевая экспертиза Организации с 5 и более проектов для одной отрасли
Экспертиза организаций по тематикам, рейтинг по количеству проектов ИИ

Образовательные программы, связанные с ИИ

  • 268 вузов
  • 65специальностей (магистратура)
  • 1 628 кафедр
  • 49 171 студентов обучаются в настоящее время
  • 200 746 человек - общий поток за 5 лет

Gamalon представила технологию самообучения по фрагментам данных

В феврале 2017 года компания Gamalon сообщила о разработке технологии искусственного интеллекта, способной быстро самообучаться по нескольким фрагментам данным. По своей эффективности и точности обучения новая разработка соответствует мощным нейронным сетям. Подробнее здесь.

2016: Развитие специализированных ИИ-систем и исследования путей создания искусственного разума

В 2016 году выделяли два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека;

  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

В это время в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла.

2013: Исследования по сортировке изображений

В ноябре 2013 года стало известно об очередной попытке в области создания искусственного интеллекта: ученые предоставили компьютеру миллионы изображений и предложили ему возможность самому проанализировать, что они обозначают. То есть речь идет о попытке создать самообучающуюся систему.

Проект под названием NEIL[2] реализуется Карнеги-Меллон Университетом, что расшифровается как Never Ending Image Learning (дословно – «бесконечное изучение изображений»).

Абхинав Гупта (Abhinav Gupta), слева, и Абхинав Шривастава (Abhinav Shrivastava) осматривают серверный кластер, задействованный в исследовании, в серверной кампуса Карнеги-Меллон Университета в Питтсбурге

В июле 2013 года для обучающегося компьютера была открыта возможность загрузки изображений из интернета в режиме 24 на 7 с тем, чтобы он сам мог выявить и построить взаимосвязи между ними. Таким образом, ученые пытаются заставить заработать искусственный интеллект: систему, способную к самообучению без помощи извне.

Например, компьютер уже смог самостоятельно установить, что зебры обычно обитают в саванне, а тигры это нечто подобное зебрам. Проект спонсируется Google и Министерством обороны США.

2011: 3-я фаза роста ИИ

В 2011 году система вопросов и ответов IBM Watson победила бессменных чемпионов последних лет в игре Jeopardy! (российский аналог программы - «Своя игра»). Системе удалось выиграть в обеих играх. В это время IBM Watson — перспективная разработка IBM, способная воспринимать человеческую речь и производить вероятностный поиск, с применением большого количества алгоритмов.

Хотя эта часть истории сильно похожа на то, что происходило еще 50 лет до этого тем не менее развитие искусственного интеллекта в это времяу происходит в принципиально других условиях.

Усложнение систем связи и решаемых задач требует качественно нового уровня «интеллектуальности» обеспечивающих программных систем, таких как:

  • защита от несанкционированного доступа,
  • информационная безопасность ресурсов,
  • защита от нападений,
  • смысловой анализ и поиск информации в сетях и т. п.

С другой стороны, глобализация экономической жизни поднимает конкуренцию на принципиально иной уровень, где требуются мощные системы управления предприятием и ресурсами, аналитики и прогнозирования, а также радикальное повышение эффективности труда. Третий этап после зимы характеризуется также наличием крупнейшего открытого источника персональных данных и кликстрима в виде Интернета и социальных сетей. Ну и, наконец, исчезает ключевой исторический стоп-фактор развития искусственного интеллекта — мощнейшие вычислительные системы, которые отныне можно строить как на дешевых серверных мощностях, так и в крупнейших облачных платформах в режиме pay-as-you-go.

Все это оправдывает оптимизм вовлеченных людей по поводу 3-й фазы роста искусственного интеллекта. Пессимизм некоторых экспертов относительно того, что направление исследований области вновь чрезмерно раздувается, легко оппонировать тем, что сейчас разработки исследователей вышли далеко за пределы лабораторий и прототипов и продолжают интенсивно проникать практически во все сферы жизни человека, начиная от автономных газонокосилок и пылесосов, оснащенных огромным количеством современных датчиков, и заканчивая умными и обучающимися мобильными ассистентами, которыми пользуются сотни миллионов людей.

Скепсис и алармизм на этом этапе даже скорее направлены в сторону чрезмерного развития и самостоятельности искусственного интеллекта и замены им собственно самих людей, которые уже в это время уступают машинам в аспекте скоростей и физическом доступе к огромному пласту данных.

1997: Компьютер Deep Blue обыгрывает чемпиона мира по шахматам Гарри Каспарова

Очередной всплеск интереса к ИИ произошел в середине 1990-х гг. В 1997 году компьютер IBM под названием Deep Blue стал первым компьютером, который победил чемпиона мира по шахматам Гарри Каспарова.

Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым.

Позже линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain.

1980-е

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение ИИ:

«
Искусственный интеллект — это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, то есть систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, — понимание языка, обучение, способность рассуждать, решать проблемы и т. д.
»

1970-е: В СССР создан толковый словарь по искусственному интеллекту

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику».

В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики.

Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х — начала 1960-х годов. Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются.

1960-е: Исследования в МГУ и Академии наук СССР

В СССР работы в области искусственного интеллекта начались в 1960-х годах. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

В 1966 году В. Ф. Турчиным был разработан язык рекурсивных функций Рефал.

1956: Появление термина "искусственный интеллект"

Летом 1956 года в Университете Дартмута в США прошла первая конференция с участием таких ученых, как Маккарти, Минский, Шеннон, Тьюринг, которые впоследствии были названы основателями сферы искусственного разума. В течение 6 недель ученые обсуждали возможности реализации проектов в сфере искусственного интеллекта. Именно тогда и появился сам термин artificialintelligence — искусственный интеллект. И именно после этой летней встречи пришло и «первое лето» в развитии проектов, связанных с этой областью.

Как видно, после знаменитой конференции в Дартмуте искусственный интеллект получил впечатляющее развитие. Были созданы машины, которые могли решать математические проблемы, обыгрывать в шахматы, и даже первый прообраз чат-бота, который мог разговаривать с людьми, вводя их в заблуждение по поводу своей осознанности.

Все эти значительные шаги вперед в сфере машинного интеллекта произошли вследствие серьезного финансирования подобных инициатив со стороны военных исследовательских организаций и, в частности, Defence Advanced Research Projects Agency (DARPA), которая была создана как шоковая реакция на запуск первого спутника Советским Союзом.

1954: ПО для игры в шахматы

В 1954 году американский исследователь Ньюэлл решил написать программу для игры в шахматы. К работе были привлечены аналитики RAND Corporation. В качестве теоретической основы программы был использован метод, предложенный основателем теории информации Шенноном, а его точная формализация была выполнена Аланом Тьюрингом.

1950: Тест Тьюринга: Когда машина сравняется разумом с человеком

История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека?

В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга.

1940-е: Моделирование мышления: нейрокибернетический и логический подходы

С конца 1940-х годов исследования в области моделирования процесса мышления разделились на два независимых подхода: нейрокибернетический и логический.

  • Нейрокибернетический подход относится к восходящему типу (англ. Bottom-Up AI) и предполагает путь изучения биологического аспекта нейронных сетей и эволюционных вычислений.

  • Логический подход относится к нисходящему типу (англ. Top-Down AI) и означает создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д[3].

1930-е: Концепция "Крошка-машина" для обучения искусственного разума как ребенка

С середины 1930-х годов, с момента публикации работ английского ученого Алана Тьюринга, в которых обсуждались проблемы создания устройств, способных самостоятельно решать различные сложные задачи, к проблеме искусственного интеллекта в мировом научном сообществе стали относиться внимательно. Тьюринг предложил считать интеллектуальной такую машину, которую испытатель в процессе общения с ней не сможет отличить от человека. Тогда же появился термин Baby Machine — концепция, предполагающая обучение искусственного разума на манер маленького ребенка, а не создание сразу «умного взрослого» робота.

1914: Устройство Леонардо Кеведо для игры в шахматы

В 1914 году директор одного из испанских технических институтов Леонардо Торрес Кеведо изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти так же хорошо, как и человек.

1835: Машина Чарльза Бэббиджа для игры в шахматы

В 1830-х годах английский математик Чарльз Бэббидж придумал концепцию сложного цифрового калькулятора — аналитической машины, которая, как утверждал разработчик, могла бы рассчитывать ходы для игры в шахматы.

1832: Семён Корсаков изобретает перфокарты и 5 "интеллектуальных машин"

Коллежский советник Семён Николаевич Корсаков (1787—1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного.

В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем.

XVII век: Рене Декарт: Животное - сложный механизм

В XVII веке Рене Декарт предположил, что животное — некий сложный механизм, тем самым сформулировав механистическую теорию.

Подходы и направления в исследованиях ИИ

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому, несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:

  • нисходящий (англ. Top-Down AI), семиотический — создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (англ. Bottom-Up AI), биологический — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.

Последний подход, строго говоря, не относится к науке о ИИ в смысле, данном Джоном Маккарти, — их объединяет только общая конечная цель.

Тест Тьюринга и интуитивный подход

Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence), опубликованной в 1950 году в философском журнале «Mind». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.

Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.

Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).

Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить. Так, хозяин Эндрю Мартина из «Двухсотлетнего человека» начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из «Звёздного пути», будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию.

Однако последний подход вряд ли выдерживает критику при более детальном рассмотрении. К примеру, несложно создать механизм, который будет оценивать некоторые параметры внешней или внутренней среды и реагировать на их неблагоприятные значения. Про такую систему можно сказать, что у неё есть чувства («боль» — реакция на срабатывание датчика удара, «голод» — реакция на низкий заряд аккумулятора, и т. п.). А кластеры, создаваемые картами Кохонена, и многие другие продукты «интеллектуальных» систем можно рассматривать как вид творчества.

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.

Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.

Основная особенность символьных вычислений — создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.

Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.

Логический подход

Логический подход к созданию систем искусственного интеллекта основан на моделировании рассуждений. Теоретической основой служит логика.

Логический подход может быть проиллюстрирован применением для этих целей языка и системы логического программирования Пролог. Программы, записанные на языке Пролог, представляют наборы фактов и правил логического вывода без жесткого задания алгоритма как последовательности действий, приводящих к необходимому результату.

Агентно-ориентированный подход

Последний подход, развиваемый с начала 1990-х годов, называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений.

Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Читайте также

Примечания

  1. При подготовке исследования эксперты SAP использовали следующую информацию: глубинные интервью с экспертами в сфере искусственного интеллекта, базы государственного финансирования научных проектов, общедоступная информация о проектах в области искусственного интеллекта и организациях-разработчиках интеллектуальных систем в интернете. В рамках исследования был проведен анализ компетенций и ресурсов в данной сфере в России, определены ведущие центры экспертизы и разработки в данной сфере, а также самые популярные и финансируемые сферы для исследований по направлению ИИ.
  2. http://rtw.ml.cmu.edu/rtw/
  3. Искусственный интеллект (ИИ) / Artificial Intelligence (AI) как ключевой фактор цифровизации глобальной экономики