2020/02/05 08:30:16

Солнечная энергетика в России

.

Содержание

Основная статья: Солнечная энергетика (мировой рынок)

2020: Ученые из Санкт-Петербурга нашли способ удешевить высокоэффективные солнечные батареи

4 февраль 2020 года в ИТМО сообщили, что группа ученых из Санкт-Петербурга предложила и экспериментально опробовала технологию создания высокоэффективных солнечных батарей на основе А3В5 полупроводниковых соединений на кремниевой подложке, которые в будущем могут иметь эффективность в полтора раза больше и при этом более низкую себестоимость, нежели фотовольтаические преобразователи с одним каскадом. Появление данной технологии некогда было предсказано нобелевским лауреатом Жоресом Ивановичем Алферовым. Результаты работы ученых опубликованы в журнале Solar Energy Materials and Solar Cells.

Высокоэффективные солнечные батареи могут стать дешевле благодаря петербургским ученым

В ИТМО отметили, что когда в мире сокращаются запасы источников углеводородного топлива и все больше растет обеспокоенность общественности относительно экологии, ученые уделяют пристальное внимание развитию так называемых «зеленых технологий». Одной из самых популярных тем является развитие солнечной энергетики.

Однако более широкому использованию солнечных батарей препятствует ряд проблем. Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность – около 20-25%. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.

Петербургские ученые предложили решение данной проблемы. Исследователи из Университета ИТМО, Академического университета им. Ж.И. Алферова и Физико-технического института им. А.Ф. Иоффе показали, что A3B5 структуры можно вырастить на дешевой кремниевой подложке, что позволит существенно сократить стоимость многокаскадного солнечного элемента.

«
«Наша работа посвящена созданию эффективных солнечных элементов на основе А3В5 на кремниевой подложке. Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния. Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния. К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру, фосфид галлия (GaP). Однако он сам не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять GaP и добавить азот N, мы получим раствор GaPN. Уже при малых концентрациях N данный материал становится прямозонным и хорошо поглощает свет, при этом может быть интегрирован на кремниевую подложку. При этом кремний является не просто фундаментом, на который синтезируется фотоматериал – кремний сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим света в ИК-диапазоне. Одним из первых идея совмещения A3B5 структур и кремния была озвучена Жоресом Ивановичем Алферовым»,

отметил Иван Мухин, сотрудник Университета ИТМО, заведующий лабораторией Академического университета, соавтор исследования
»

В лаборатории ученым удалось получить верхний слой солнечной батареи, интегрированный на кремниевую подложку. Если таких фотоактивных слоев будет больше, то и эффективность солнечной батареи станет существенно выше, так как каждый слой солнечной батареи будет эффективно поглощать свою часть солнечного спектра.

Пока в лаборатории был создан первый небольшой прототип солнечной батареи на основе элементов А3В5 на кремниевой подложке. На февраль 2020 года перед учеными стоит задача создать солнечный элемент, имеющий в своем составе несколько фотоактивных слоев. Такие солнечные батареи заметно эффективнее поглощают солнечный свет и генерируют электрическую энергию.

«
«Мы научились растить самый верхний слой. Эта система материалов потенциально может быть использована и для промежуточных слоев. Если добавить мышьяк As, то получится GaPNAs – из него на кремниевой подложке можно вырастить несколько каскадов, работающих в разных частях солнечного спектра. Как показали наши предыдущие работы, потенциально эффективность таких солнечных батарей может превышать 40% при концентрации света, то есть быть в 1,5 раза выше, нежели в современных Si технологиях»,

отметил Иван Мухин, сотрудник Университета ИТМО, заведующий лабораторией Академического университета, соавтор исследования
»

2019

«Хевел» построила СЭС на железнодорожной станции в Ставрополье

17 декабря 2019 года группа компаний «Хевел» сообщила о выполнении поставки оборудования и монтажа солнечной электростанции мощностью 30,7 кВт для электроснабжения железнодорожной станции Светлоград в Ставропольском крае. Подробнее здесь.

В Калмыкии завершено строительство подстанций Малодербетовская и Яшкульская для солнечных электростанций

13 декабря 2019 года компания РОТЕК сообщила, что её специалисты завершили строительство и сдали заказчику два объекта сетевой инфраструктуры на юге России: повышающие подстанции ПС 10/110 кВ «Малодербетовская» и «Яшкульская». Они предназначены для выдачи мощности двух солнечных электростанций общей мощностью 120 МВт, возводимых компанией Хевел. Подробнее здесь.

«Хевел» ввела в эксплуатацию Хоринскую СЭС в Бурятии мощностью 15 МВт

9 декабря 2019 года компания Hevel solar сообщила, что в Хоринском районе Республики Бурятия введена в эксплуатацию солнечная электростанция (СЭС) мощностью 15 МВт. Открытие солнечной электростанции состоялось в рамках рабочей поездки Главы Республики Бурятия Алексея Цыденова в Хоринский район. Подробнее здесь.

«Хевел» ввела в эксплуатацию Лиманскую СЭС в Астраханской области мощностью 30 МВт

3 декабря 2019 года группа компаний «Хевел» сообщила о том, что ввела в эксплуатацию солнечную электростанцию в Астраханской области – Лиманскую СЭС мощностью 30 МВт. Станция с 1 декабря 2019 года начала отпуск электроэнергии в сеть. Подробнее здесь.

«Росэлектроника» вывела на рынок многофункциональную автономную станцию с солнечными батареями

8 ноября 2019 года холдинг «Росэлектроника» Госкорпорации Ростех сообщил, что выводит на рынок многофункциональную автономную станцию, оснащенную солнечными батареями и мощной аккумуляторной батареей. Накопленной солнечной энергии устройству достаточно как для освещения улиц в темное время суток, так и для круглосуточной зарядки мобильных устройств и организации точки Wi-Fi доступа. Подробнее здесь.

Реализация более 7 тыс. солнечных модулей «Хевел» за 6 месяцев в 33 российских регионах

1 ноября 2019 года группа компаний «Хевел» проанализировала данные о регионах, в которые были осуществлены поставки собственных солнечных модулей за 6 месяцев 2019 года с апреля по сентябрь. Всего за указанный период было реализовано более 7000 солнечных модулей «Хевел» в 33 российских регионах.

На основании этих данных был составлен рейтинг топ-15 регионов, в которых частная солнечная энергетика развивается наиболее активно. Подробнее здесь.

«Росэлектроника» поставила солнечные батареи в Республику Тыва

Холдинг «Росэлектроника» Госкорпорации Ростех 31 октября 2019 года сообщил о поставке фотоэлектрических солнечных модулей отечественного производства на базе кристаллического кремния в Республику Тыва. Батареи обладают высокой прочностью для защиты от повреждений при воздействии града, снега, льда и ветра.

За счет низкого содержания оксидов железа, специального рельефа поверхности и высокой теплопроводности покрытия солнечные модули, разработанные Рязанским заводом металлокерамических приборов (входит в «Росэлектронику»), обеспечивают повышенную выработку энергии. Мощность каждого солнечного модуля – 270 Вт.

Солнечные батареи высокой мощности могут применяться для освещения дорог и пешеходных переходов, строительства крупных сетевых станций, создания охранных и навигационных систем, в сельском хозяйстве для организации работ систем орошения и водоснабжения, а также электропитания ограждений.

Специальные разъемы и кабели позволяют легко монтировать модули, что сокращает затраты при установке, а также обеспечивает повышенную безопасность при эксплуатации.

«
Использование «зеленой» энергетики – мировой тренд при создании «умных» городов. И с каждым годом область применения солнечных батарей стремительно растет. Емкость российского рынка составляет 600 МВт – это около 30 млрд рублей, а к 2022 году в связи с реализацией нацпроектов по модернизации городской среды она увеличится до 1 330 МВт – 66,5 млрд рублей. Помимо серийных изделий, мы готовы выпускать модули по индивидуальным проектам заказчиков, – рассказали в «Росэлектронике».
»

Ввод в эксплуатацию солнечной электростанции на территории "Омского НПЗ"

На территории Омского НПЗ «Газпром нефть» при участии группы компаний «Хевел» введена в эксплуатацию первая в регионе солнечная электростанция мощностью 1 МВт. Объект генерации состоит из 2,5 тысяч солнечных модулей, установленных на незадействованных в производственных процессах площадях, а также на кровле и фасадах зданий, сообщили в «Хевел» 21 октября 2019 года. Подробнее здесь.

Производство заводом «Хевел» 62 МВт солнечных модулей за третий квартал

Завод по производству солнечных модулей группы компаний «Хевел» за третий квартал 2019 года выпустил около 185 тысяч гетероструктурных солнечных модулей общей мощностью 62 МВт, что на 25% больше, чем за аналогичный период прошлого года. Всего за 9 месяцев 2019 года произведено более 496 тысяч солнечных модулей общей мощностью 160 МВт, сообщили в «Хевел» 17 октября 2019 года. Подробнее здесь.

Запуск программы электроснабжения бурятских фермеров с помощью солнечной энергии

12 сентября 2019 года компания Hevel сообщила, что правительство Республики Бурятия запустило программу электроснабжения фермерских хозяйств за счет технологий солнечной энергетики. Механизм поддержки предусматривает выделение фермерам субсидий на покупку энергетического оборудования, необходимого для ведения хозяйственной деятельности. Субсидии покрывают 95% расходов на энергоустановку и не включают налоговые выплаты. Оставшиеся 5% стоимости оплачивает фермер. Подробнее здесь.

В Республике Калмыкия введена в эксплуатацию первая в регионе солнечная электростанция

В Черноземельском районе Республики Калмыкия введена в эксплуатацию первая в регионе солнечная электростанция. Об этом 21 августа 2019 года сообщила компания Hevel, построившая солнечную электростанцию.Подробнее здесь.

Выпуск заводом «Хевел» 311 тыс. солнечных модулей мощностью 98 МВт

19 июля 2019 года группа компаний «Хевел» сообщила о том, что в первом полугодии 2019 года завод по производству солнечных модулей выпустил более 311 тысяч высокоэффективных гетероструктурных солнечных модулей общей мощностью 98,2 МВт, что на 18% больше чем за аналогичный период прошлого года. Подробнее здесь.

Елшанская солнечная электростанция мощностью 25 МВт введена в эксплуатацию

В Оренбургской области введена в эксплуатацию Елшанская СЭС мощностью 25 МВт. C 1 июля 2019 года станция начала отпуск электроэнергии в сеть, сообщили в компании «Хевел». Подробнее здесь.

«Хевел» увеличила годовой объем выпуска солнечных модулей в Новочебоксарске до 260 МВт

Группа компаний «Хевел» 24 июня 2019 года объявила о завершении модернизации производственных мощностей на заводе в Новочебоксарске. Годовой объем выпуска гетероструктурных солнечных модулей увеличен со 160 до 260 МВт, что позволило на 50% обеспечить текущие потребности российского рынка солнечной энергетики. Также с этого дня завод начал производить двухсторонние солнечные ячейки и модули, мощность фронтальной стороны которых достигает 380 Вт. Подробнее здесь.

В России создали новый полупроводниковый материал для солнечных батарей

Группа российских ученых создала новый полупроводниковый материал без использования свинца, который может быть применен в солнечных батареях для повышения их эффективности. Об этом в 13 мая 2019 года сообщила пресс-служба одного из участников исследования Сколковского института науки и технологий (Сколтеха).

«
"Сотрудничество исследователей из Сколтеха, Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (СО РАН) и Института проблем химической физики РАН позволило создать перспективные бессвинцовые полупроводниковые материалы для использования в солнечных батареях на основе комплексных галогенидов сурьмы и висмута. Результаты исследования были опубликованы в журнале Journal of Materials Chemistry и анонсированы на его обложке", - говорится в сообщении.
»

Большой интерес для использования в настоящее время представляют солнечные батареи на основе комплексных галогенидов свинца, то есть соединения свинца с элементами 17-й группы периодической таблицы Менделеева (фтором, хлором, бромом или иодом), с перовскитной структурой - напоминающей структуру минерала перовскита, кристаллы которого имеют кубическую форму. Такие батареи отличаются низкой стоимостью, простотой изготовления и высокой эффективностью преобразования света.

Массовое производство и внедрение перовскитных батарей в настоящее время ограничивается двумя факторами: низкой стабильностью комплексных галогенидов свинца и токсичностью этих соединений. Поэтому во всем мире активно ведется разработка альтернативных бессвинцовых материалов, в частности на основе галогенидов висмута и сурьмы. Однако все ранее полученные образцы имеют низкую эффективность преобразования света. Команда российских ученых доказала, что причиной является неоптимальное строение соединений висмута и сурьмы.

«
"Мы выяснили, что низкая размерность анионной решетки таких соединений (нулевая, иногда 1D и крайне редко - 2D), не позволяет реализовать беспрепятственный транспорт дырок и электронов, необходимый для эффективной работы солнечных элементов. В результате материалы данного класса могут демонстрировать эффективную работу в латеральных фотодетекторах, но не работают в солнечных элементах," - сказал профессор Центра энергетических исследований Сколтеха Павел Трошин, его слова приводятся в сообщении.
»

Физики разработали принципиально новый материал для солнечных батарей на основе перовскитоподобного комплексного бромида сурьмы (ASbBr6, где А является органическим положительно заряженным ионом). Солнечные батареи на основе этого материала показали рекордные для галогенидов сурьмы и висмута КПД преобразования света. По словам Трошина, эта работа открывает принципиально новые возможности для развития перовскитной электроники.

"Хевел" построит в Башкирии солнечную электростанцию с накопителем энергии

25 апреля 2019 года группа компаний «Хевел» сообщила, что до конца 2019 года построит в России гибридную солнечную электростанцию с промышленными накопителями энергии. Солнечная генерация общей мощностью 10 МВт будет расположена в Бурзянском районе Республики Башкортостан. Подробнее здесь.

В МГУ найден нетоксичный способ получения нанокремния для применения в покрытиях солнечных батарей

13 февраля 2019 года стало известно о том, что ученые МГУ нашли нетоксичный способ производства кремниевых наноматериалов. При производстве кремниевых наноструктур, востребованных в разных областях промышленности, как правило, используется достаточно токсичная плавиковая кислота. Сотрудники МГУ имени М.В. Ломоносова нашли способ, как избежать ее применения. Открытие ученых МГУ может найти применение в промышленном производстве основанных на нанокремнии антиотражающих покрытий для солнечных батарей, оптических сенсоров для обнаружения различных молекул, наноконтейнеров для доставки лекарств. Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее здесь.

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Владельцам солнечных батарей на домах разрешат продавать электричество

В России вскоре разрешат продажу электричества собственникам альтернативных источников энергии в частных домовладениях. Соответствующие поправки в закон «Об электроэнергетике» разработало Министерство энергетики, пишут в мае 2018 года «Известия». По данным издания, правительство может одобрить документ и внести в Госдуму до конца мая 2018 года[1].

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил и.о. министра по развитию транспорта, энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове[2].

"В период с 2019 оп 2021 годы ГК "Хевел" (совместное предприятие "Ренова" и УК "Роснано") планируется построить три СЭС - Хоринскую мощностью 15 МВт, Торейскую на 45 МВт) и Джидинскую мощностью 30 МВт. Таким образом, совокупная мощность проектов строительства СЭС, планируемых к реализации ГК "Хевел" на территории Бурятии, составляет 100 МВт. Общий объем инвестиций при реализации проектов СЭС составит более 10 млрд рублей", - сообщил Назимов, напомнив, что в 2017 году в республике построена Бичурская солнечная электростанция мощностью 10 МВт.

Общий объем инвестиций в СЭС в Бичурском районе составил около 1,2 млрд рублей. "Выработка электроэнергии за период эксплуатации составила более 10 тыс. МВт*ч", - уточнил и.о. министра. СЭС в Хоринском районе начали строить в июле 2018 года, завершение работ планируется к ноябрю 2019 года.

Также Назимов напомнил, что с 2018 года в Бурятии проводится эксперимент: небольшая гибридная электростанция мощностью 10 кВт (стоимостью 1 млн рублей) рублей передана в опытную эксплуатацию одному из бурятских крестьянско-фермерских хозяйств (КФХ) в Бичурском районе, в местности Ара-Харлун. Это фермерское хозяйство Тулкимбека Эрматова, который более 10 лет занимается разведением коней, крупного и мелкого рогатого скота, птицы. Гибридная установка, состоящая из шести гетероструктурных солнечных модулей, аккумуляторной батареи емкостью 9,6 кВт/ч, дизельного электрогенератора и инвертора, заменила в хозяйстве ранее использовавшийся бензиновый генератор.

Т Плюс начинает строительство крупнейших в России солнечных станций

Компания "Т Плюс" приступила в начале 2018 года к строительству крупнейшего в России фотовольтаического массива на западе Оренбургской области совокупной установленной мощностью 105 МВт. Команду на начало строительных работ дали председатель правления ПАО "Т Плюс" Денис Паслер и губернатор Оренбургской области Юрий Берг.

Две новые солнечные станции будут построены в поселке Новосергиевка (45 МВт) и городе Сорочинск (60 МВт). Последняя станет самой крупной СЭС на территории России, построенной в рамках федеральной программы по развитию возобновляемых источников энергии. Строительство планируется завершить в начале 2019 года. Стоимость двух станций составляет свыше 10 млрд рублей.

СЭС в Новосергиевке будет состоять из152 175 фотоэлектрических модулей российского производства, расположенных на площади 92 га. В Сорочинске установят 202 075 солнечных панелей на площади 123,3 гектара. Поставщиком модулей выступит ООО "Хевел".

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России. По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед[3].

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк, запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики. Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел" (совместное предприятие Группы компаний "Ренова" и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015—2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские исследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы[4] в журнале Journal of Physical Chemistry C[5].

Ученые нашли способ повышения эффективности солнечных батарей.gif

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», — отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов, СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии.

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

В апреле 2017 г на совместном предприятии ГК «Ренова» и госкорпорации «Роснано» в Чувашии заработает новая линия по выпуску модернизированных солнечных батарей. Об этом заявил в феврале глава «Реновы» миллиардер Виктор Вексельберг, пишет ТАСС. Годовой объем выпуска энергогенерирующих мощностей новой линии составит 160 мегаватт. Подробнее смотрите - Ренова (группа компаний).

«Хевел» в Оренбургской и Астраханской областях

В октябре 2017 г губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России. Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

В феврале Группа компаний «Хевел» объявила о вводе в эксплуатацию двух солнечных электростанций в Оренбургской области – Плешановскую и Грачевскую СЭС, мощностью по 10 МВт каждая. Установленная мощность двух СЭС эквивалентна энергопотреблению не менее 4000 частных домохозяйств.

РКС представила Систему электрической защиты солнечных батарей

В начале 2017 года Холдинг «Российские космические системы» (РКС, входит в состав Госкорпорации «Роскосмос») завершил создание модернизированной системы электрической защиты для солнечных батарей отечественного производства. Ее применение позволит существенно продлить срок работы источников питания космических аппаратов и сделает российские солнечные батареи одними из самых энергоэффективных в мире. Подробнее здесь.

2015

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа, то в прошлом году пальму первенства перехватил Китай.

По данным Министерства Энергетики РФ на 1 января 2016 года совокупный объем установленных мощностей, работающих на энергии солнца, в России составил 60,2 МВт. Ключевой драйвер роста данного рынка – государственная поддержка, которая приносить результаты уже в 2015 году. В 2015 году состоялось открытие большого количества солнечных электростанций, в том числе крупнейшая Орская СЭС имени А.А. Влазнева мощностью 25 МВт. Согласно государственной стратегии развития возобновляемой энергетики, до 2024 года в России должны быть построены солнечные электростанции суммарной мощностью около 1,5 ГВт. Основной проблемой дальнейшего развития является требуемый уровень локализации, который с 2016 года вырос до 70%.

Большинство действующих солнечных электростанций в России были введены в 2015 году, ключевой игрок на данном рынке компания «Хевел», которой принадлежат почти все возведенные и проектируемые электростанции: Бурибаевская СЭС мощностью 10 МВт, Кош-Агачская СЭС мощностью 10 МВт (единственная введенная в эксплуатацию в 2014 году) и другие мощностью около 5 МВт. После присоединения в марте 2014 года к России полуострова, на нем оказалось 6 СЭС общей мощностью 400 Мвт (из них стабильно работающие четыре мощностью 227 МВт, остальные в опытно-промышленной эксплуатации). Проблемой развития солнечной энергетики в данном регионе является существенное изменение в государственной поддержке после присоединения Крыма, в итоге в 2014 году большинство электростанций оказались закрыты. В Республике Крым в 2010-2012 годах построены 4 солнечных парка (СЭС) общей мощностью 227,3 МВт: СЭС «Родниковое» (7,5 МВт); СЭС «Охотниково» (82,65 МВт); СЭС «Перово» (105,6 МВт); СЭС «Митяево» (31,55 МВт). Также были построены СЭС «Николаевка» мощностью 69,7 МВт (введена в строй в августе 2015 года) и СЭС «Владиславовка» мощностью 110 МВт (запуск планируется на 2016 год). С сентября 2015 года установленная мощность пяти введённых в эксплуатацию солнечных электростанций составляет 297 МВт.

В 2015 году кремниевые солнечные модули занимают 93% мирового рынка. Они, в свою очередь, подразделяются на монокремниевые (15,1 ГВт) и поликремниевые (43,9 ГВт), второй тип преобладает на мировом рынке, хотя еще в начале 2000-х наиболее распространенным типов PV модулей были монокремниевые. На долю тонкопленочных солнечных модулей приходится всего 7% продаж. К числу развивающихся технологий производства солнечных модулей относятся фотоэлектрические концентраторы и органические солнечные модули.

В 2015 году примерно одинаковая доля у трех ведущих мировых производителей: Trina Solar (Китай/Голландия), JA Solar (Китай/Малайзия) и Hanwha Q-Cells (Китай/Германия/Малайзия/Южная Корея). В десятке ведущих мировых производителей фотовольтаики преобладают китайские компании. Единственный производитель солнечных батарей в России в промышленных масштабах – запущенный в 2014 году завод компании «Хевел» в Новочебоксарске, помимо него можно также выделить «Рязанский завод металлокерамических приборов», ПАО «Сатурн» и «Телеком-СТМ».

Смотрите также

Примечания