Квантовый компьютер и квантовая связь.
 
ТоварыВалюты, ЦБАкции
17 декабря 14:15
Золото ЦБ
₽2381
11,04
Золото
$1258
-0,07%
Серебро ЦБ
₽30,32
0,68
Серебро
$16,1
0,00%
Нефть
$63,2
-0,19%

₽2,13
0,00

₽0,18
0,00
Br
₽29,0
0,03

₽69,4
0,03
€ / $
1,17
0,00%
Bitcoin
$19636
1.52%
Ethereum
$724
3.95%
Ростелеком
₽64,3
0,31%
Яндекс
₽1895
-1,25%
Mail.ru
$28,6
-0,69%
Luxoft
$54,6
2,06%
Epam
$106,7
1,54%
Мегафон
₽524,0
1,35%
МТС
₽266,0
3,83%
Veon
$3,9
-1,53%
Qiwi
₽847
2,54%
РБК
₽5,9
-1,84%
2017/12/06 18:03:50

Квантовый компьютер и квантовая связь

Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами (квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии.

Первые квантовые компьютеры напоминают старые громоздкие вычислительные системы, они поставляются в больших шкафах высотой в 10 футов (около 3 м) и объёмом в 700 куб. футов (около 20 куб. м). При этом размеры самого квантового чипа достаточно небольшие и сопоставимы с размерами ногтя большого пальца.

Большую часть остального пространства компьютера занимают системы охлаждения и экранирования. Они предназначены для создания необходимых условия функционирования компьютера и устранения внешних воздействий. Благодаря применению системы охлаждения на базе жидкого гелия температура квантового чипа находится на уровне −273оС.

Содержание

Квантовый компьютер — средство вычислительной техники, где в основе работы центрального процессора лежат законы квантовой механики. Такой компьютер принципиально отличается от традиционных ПК, работающих на основе кремниевых чипов. Пока еще квантовый компьютер - устройство, о котором говорят многие исследователи физики вычислений.

Это устройство применяет для вычисления не классические алгоритмы, а процессы квантовой природы - квантовые алгоритмы, использующие эффекты квантовой механики, такие как квантовый параллелизм и квантовая запутанность.

Базой для вычислений такого типа служит кубит - система, в которой число частиц аналогично импульсу, а фазовая переменная (энергетическое состояние) – координате. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается.

На рисунке элементарная схема фазового кубита и его фотография. Источник: t-z-n.ru

В отличие от обычного бита, способного иметь только значения 1 и 0, квантовый бит (кубит) может находиться в суперпозиции этих состояний, то есть одновременно в значении 1 и 0. На практике кубит может существовать в самых разных комбинациях этих значений, что в перспективе позволит создавать сверхбыстродействующие компьютеры. Кубиты станут строительными элементами будущих квантовых компьютеров, способных решать задачи, практически недоступные классическим цифровым компьютерам. Для выполнения вычислений на квантовом компьютере необходимо привести во взаимодействие несколько кубитов, причем таким образом, чтобы они образовали единую квантовую систему. Затем этой системе надо позволить развиваться по законам квантовой механики и спустя определенное время выяснить, в какое состояние она пришла.

С ростом числа объединенных кубитов, вычислительная мощность такой квантовой системы экспоненциально растет. Теоретически это позволяет квантовому компьютеру справляться с задачами, на которые обычному цифровому компьютеру понадобятся миллионы лет. Например, давно известен так называемый алгоритм Шора, позволяющий быстро раскладывать большие числа на простые множители (задача, необходимая для взлома современных шифров). Обычные компьютеры решают эту задачу перебором возможных делителей, поэтому длинные числа современные компьютеры могут обрабатывать годами. Квантовый компьютер справился бы с такой задачей за считанные минуты и даже секунды, в зависимости от производительности.

Проблемы в создании квантового компьютера

На пути создания квантового компьютера существует множество проблем. Прежде всего необходимо научиться приводить кубиты в определенные исходные состояния, объединять их в запутанные системы, изолировать эти системы от влияния внешних помех, считывать результаты квантового расчета.

Также разработчикам квантового компьютера предстоит выбрать оптимальную элементную базу для изготовления кубитов. Имеется несколько конкурирующих подходов, и один из них — сверхпроводящие кубиты с джозефсоновскими переходами, похожие на первые носители компьютерной информации – ферритовые колечки. Правда, кубиты примерно в тысячу раз меньше магнитных битов эпохи, предшествовавшей появлению интегральных микросхем. Разработками в данной области занято множество иностранных институтов и лабораторий крупных компаний. Обладание рабочим прототипом универсального квантового компьютера открывает огромные возможности в разработке новых материалов, расшифровке сложнейших кодов, моделировании сложных систем, создании универсального искусственного интеллекта и множестве других областей. С появлением технологии считывания состояний кубитов, Россия также может включиться в эту многообещающую работу на передовом крае науки и компьютерной техники.

По сути своей, квантовые вычислительные системы представляют собой вершину развития параллельных вычислений. Этим системы способны решать сложнейшие вычислительные задачи, недоступные традиционным компьютерам. В частности, квантовые компьютеры позволяют осуществлять моделирование природных процессов в интересах специалистов по химии, материаловедению и молекулярной физике. С появлением квантовых компьютеров учёные, наконец, смогут создать катализатор для абсорбирования углекислого газа из атмосферы, сверхпроводники, способные работать при комнатной температуре, и новые лекарства от неизлечимых пока болезней.

Однако несмотря на существенный прогресс в исследованиях и активные дискуссии об успехах учёных, остаётся актуальной проблема преодоления естественных препятствий на пути создания жизнеспособных крупномасштабных квантовых систем, способных демонстрировать требуемую точность вычислений. Одним из таких препятствий является проблема производства однородных и стабильных кубитов (базовых элементов квантовых вычислительных систем).

Кубиты требуют крайне нежного обращения. Случайный шум и даже случайное наблюдение за кубитом способны привести к потере данных. Для устойчивой работы кубитов необходима чрезвычайно низкая температура окружающей среды - на уровне 20 миллиКельвин, что в 250 раз холоднее температуры открытого космоса. Подобный температурный режим предъявляет строжайшие требования к конструкции корпусов квантовых систем, в состав которых входят кубиты. Стремясь реализовать весь потенциал квантовых вычислительных систем, специалисты Intel из Группы исследования компонентов (CR) в Орегоне и Экспериментального производственного комплекса (ATTD) в Аризоне напряжённо работают над созданием инновационных архитектур и корпусов для выполнения уникальных требований и задач квантовых вычислительных систем.

Прогресс в развитии

2017

В России представлен квантовый телефон ViPNet

13 декабря 2017 года компания ИнфоТеКС сообщила о представлении «Квантового телефона ViPNet» – системы, демонстрирующей интеграцию аппаратуры квантового распределения ключей.

Презентация «Квантового телефона ViPNet», (2017)

Продукт разработан в лаборатории квантовых оптических технологий физфака МГУ, и VPN ViPNet (на примере двух продуктов – ViPNet Client и ViPNet Connector). Квантовый телефон ViPNet позволяет соединять рабочие станции с установленным ПО ViPNet и шифровать трафик между ними с использованием квантового распределения ключей. Квантовое распределение ключей позволяет обеспечить высокий уровень безопасности при передаче данных по недоверенным (публичным) каналам связи, помогает устранить угрозу вычисления ключей защиты на квантовых компьютерах.

В США создан 53-кубитный квантовый компьютер

В начале декабря 2017 года стало известно о том, что ученые из Мэрилендского университета в Колледж-Парке (UMD) и Национального института стандартов и технологий (NIST) США создали модель квантовой системы, состоящей из 53 кубитов, которые применяются для имитации квантовой материи.

Симулятор UMD-NIST был создан путем развертывания 53 отдельных иттербиевых ионов, удерживаемых на месте позолоченными электродами

По словам авторов проекта, симулятор UMD-NIST был создан путем развертывания 53 отдельных иттербиевых ионов, удерживаемых на месте позолоченными «бритвенно острыми» электродами. При этом количество атомов, по заверению ученых, можно еще увеличить, что, в свою очередь, приведет к росту числа кубитов.

UMD-NIST может работать при комнатной температуре и обычном атмосферном давлении — такое свойство характерно для всех систем кубитов, базирующихся на ионах. В представленной модели кубиты надежно изолированы от влияния окружающей среды.

« Каждый ионный кубит — это стабильные атомные часы, которые можно полностью воспроизвести, — заявил профессор физики Кристофер Монро (Christopher Monroe), руководитель команды UMD. — Они эффективно соединены вместе с внешними лазерными лучами. Это означает, что одно и то же устройство может быть перепрограммировано и перенастроено снаружи, чтобы адаптироваться к любому типу квантового моделирования или будущего квантового компьютерного приложения, который появится. »

Современные транзисторные компьютеры испытывают сложности, имея дело более чем с двадцатью взаимодействующими квантовыми объектами в связи с явлением квантового магнетизма — из-за него взаимодействие может привести к магнитному выравниванию или смешению конкурирующих интересов. В частности, 53 взаимодействующих друг с другом квантовых магнита создают около квадриллионов возможных магнитных конфигурации, и это количество удваивается с добавлением нового магнита, утверждают ученые.

По мнению ведущего автора исследования Цзехана Чжана (Jiehang Zhang), вскоре появится возможность контролировать 100 и более кубитов. Результаты своих исследований Чжан с коллегами опубликовали в журнале Nature.[1]

Intel Квантовый 17-кубитный процессор

В октябре 2017 года было объявлено о поставке экспериментального 17-кубитного процессора Intel, созданного на базе технологий сверхпроводимости, в нидерландский исследовательский центр QuTech, занимающийся совместно с Intel исследованиями в области квантовой физики. Процессор, изготовленный на производственных мощностях Intel, отличается уникальной структурой кристалла, позволяющей повысить выход годных кристаллов на пластине и добиться существенного прироста производительности.

Ученые из Австралии разработали основу для квантового интернета

Как стало известно 12 сентября 2017 года, группа исследователей из Австралийского национального университета (ANU) разработала легированный ионами эрбия кристалл, который, как предполагается, может стать оптимальным материалом для построения глобальной телекоммуникационной сети. По мнению исследователей, кристалл, обладающий «странными квантовыми свойствами», может применяться в том числе для создания сети следующего поколения — квантового интернета. Эксперимент с кристаллами эрбия проводился под руководством доцента ANU Мэтью Селларса, пишет ZDNet.

По его словам, исследователям удалось значительно улучшить жизненно важный компонент для практического применения квантового интернета — время хранения квантовой памяти. Теоретически единицу информации квантовых компьютеров (кубит) можно сохранить с помощью фотонов, которые изменяют энергетические уровни атомов. Состояния «0» и «1» обеспечиваются низкими и высокими уровнями энергии, однако считывать подобную информацию достаточно сложно — атомы могут просто разойтись или "переизлучить" фотон, содержащий кубит, в случайном направлении.[2]

Открытие

Австралийские исследователи предложили иной способ хранения квантового состояния. В его основе лежит эрбий — ион редкоземельного элемента, квантовые свойства которого позволяют ему передавать-принимать данные посредством волн длиной 1550 нм. Такие же волны используются в современных волоконно-оптических системах. В ходе эксперимента было установлено, что применение эрбия при передаче квантовых состояний устраняет необходимость в процессе преобразования, более того, их передача осуществима в существующих телекоммуникационных сетях. Исследователям удалось доказать, что ионы эрбия в кристалле могут хранить квантовую информацию на протяжении секунды — в 10 тыс. раз дольше, чем позволяют уже известные методологии хранения. Однако ученым еще предстоит «разогнать» ионы редкоземельного элемента для обеспечения циркуляции квантовой информации по всей глобальной сети.


Применение

Как отметила д-р Роуз Ахлефельдт, сотрудник Центра квантовых вычислительных и коммуникационных технологий ANU, квантовая память с продолжительностью жизни в 1 секунду позволит буферизовать и синхронизировать информацию, что необходимо для квантовой связи на больших расстояниях. Технология может также работать как квантовый источник света или применяться для оптической связи между твердотельными квантовыми вычислительными устройствами, подключенными к квантовому интернету.

По утверждению исследователей ANU, разработанный кристалл совместим с существующей волоконной оптикой и со сверхпроводящими кубитами, разрабатываемыми Google и IBM, при этом сможет работать со многими типами квантовых компьютеров, включая CQC2T.

Квантовый интернет

Ожидается, что в ближайшем будущем квантовый интернет может стать отдельным ответвлением обычного интернета. Исследовательские группы по всему миру разрабатывают чипы, которые позволят обычному компьютеру подключаться к квантовой сети, но на начальном этапе развития технологии в нее можно будет входить только для определенных задач. Например, с целью отправки сообщения с использованием квантовой криптографии (при перехвате квантового ключа сообщение будет моментально уничтожено). Квантовый интернет также может быть полезен для потенциальных схем квантовых вычислений.

Китай первым протестировал квантовое шифрование для передачи данных со спутника

10 августа стало известно о том, что китайские ученые первыми в мире смогли успешно передать данные с применением технологии квантового шифрования. Пакет информации был отправлен со спутника «Мо-Цзы» на наблюдательные станции Синлун (провинция Хэбэй) и Наньшань (Синьцзян-Уйгурский автономный район). Расстояние между спутником и наземными станциями составляло от 645 до 1200 км в разные моменты передачи пакета данных, рассказал в интервью агентству «Синьхуа» академик китайской академии наук Пан Цзянвэй (Pan Jianwei).[3]

По его словам, технология квантового шифрования позволила достичь скорости передачи данных на «на 20 порядков выше», чем если бы для этой цели применялось оптоволокно, проложенное из космоса. При этом Пан Цзянвэй подчеркнул, что для генерации и передачи на Землю 300 Кбит зашифрованной информации у китайских ученых было только одно 10-минутное окно, в рамках которого спутник пролетал над территорией страны.

« Технология квантового шифрования решает несколько вопросов безопасности. Например, абсолютно безопасного телефонного разговора, который никто не сможет прослушать, или передачи банковских данных, которые никто не сможет перехватить. При попытке взлома квантового канала связи, все передаваемые по нему данные будут просто уничтожены, — заявил Пан Цзянвэй. »

Запуск «Мо-Цзы». Фото: Naked Science

Спутник квантовой связи «Мо-Цзы» был запущен в августе 2016 года. Период обращения спутника вокруг земли составляет 90 минут, вес — 631 кг. Аппарат предназначен для проведения ряда научных экспериментов, включая тестирование квантового распределения ключа между выведенным на орбиту аппаратом и наземными комплексами, исследование механизма квантовой запутанности, а также тестирование квантовой телепортации между спутником и станцией в Тибете. Предполагалось, что исследования займут около двух лет.[4]

Изначально планировалось передавать данные на пять станций в Китае и Австрии. К концу 2017 года еще два наземных объекта будут подготовлены к приёму данных с «Мо-Цзы» — в Германии и Италии.

Ранее эксперименты с квантовым шифрованием проводились только на Земле: в Европе, США и Китае. Для передачи ключей использовалось оптоволокно, но по мере продвижения сигнал ослабевал. Размещение источника сигнала в космосе решило эту проблему, поскольку основную часть пути фотоны проходят в вакууме.

По мнению ученых, квантовое шифрование позволит Китаю уже к 2030 году создать невзламываемую сеть, которая сможет обеспечить полную конфиденциальность и будет отличаться устойчивостью к любым атакам. Считывать информацию с подобных каналов данных злоумышленникам помешает принцип неопределенности Гейзенберга, один из основополагающих принципов квантовой механики, согласно которому следствием любого внешнего вмешательства в квантовую систему будет её необратимое изменение.

Ученые из США и России создали 51-кубитный квантовый компьютер

В июле 2017 года стало известно о том, что группа ученых из Гарвардского университета и Массачусетского технологического института под руководством Михаила Лукина, профессора физики из Гарварда и сооснователя Российского квантового центра, создала и проверила программируемый квантовый компьютер на базе 51 кубита, став, таким образом, лидером среди участников «квантовой гонки».

По словам Михаила Лукина, он и его коллеги использовали кубиты на основе «холодных атомов», которые удерживались оптическими «пинцетами» — специальным образом организованными лазерными лучами. Большинство современных квантовых компьютеров основаны на использовании сверхпроводящих кубитов на базе контактов Джозефсона.
Группа американских ученых под руководством российского физика создала 51-кубитный квантовый компьютер. Фото: indicator.ru

Лукину и его коллегам удалось решить с помощью своего квантового вычислителя задачу моделирования поведения квантовых систем из множества частиц, которая была практически нерешаема с помощью классических компьютеров. Более того, в результате им удалось предсказать несколько ранее неизвестных эффектов, которые затем были проверены с помощью обычных компьютеров. В итоге ученым удалось найти способ приближенных вычислений, которые помогли получить сходный результат на классическом компьютере.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером, возможно, они попытаются использовать эту систему для проверки алгоритмов квантовой оптимизации, которые позволяют превзойти существующие компьютеры.

Между землей и самолетом впервые наладили квантовую связь

Физики из Университета Уотерлу (Канада) впервые реализовали квантовый канал связи для распределения секретных ключей шифрования между летящим самолетом в качестве получателя и наземной станцией в качестве отправителя. В рамках эксперимента ученым удалось в 6 попытках из 14 сгенерировать секретный ключ. В будущем система может найти применение для квантовой связи между самолетами и спутниками. Исследование опубликовано[5] в журнале Quantum Science and Technology, кратко о нем сообщает[6] Physics World[7].

Существующие системы криптографии основаны на существовании секретного ключа, с помощью которого происходит шифрование информации. Без знания этого ключа расшифровка по сути невозможна. К примеру, в методе шифровальных блокнотов и получатель и отправитель хранят у себя абсолютно идентичные наборы случайных данных, которые суммируются с текстом сообщения. Без блокнота перебор всех возможных ключей даст все возможные сообщения данной длины.

Однако ключ необходимо каким-либо образом передать между участниками связи. Перехват ключа на этом этапе позволит злоумышленнику полностью расшифровать всю переписку. Чтобы такой перехват был невозможен на уровне законов физики, ученые разработан алгоритм квантового распределения ключа. Он основан на передаче одиночных фотонов, приготовленных в случайном состоянии («ноль» или «единица») и в случайном базисе (в вертикальной/горизонтальной или диагональной поляризации). При попытке злоумышленника измерить поляризацию фотона, произойдет изменение состояния последнего. Это удастся легко отследить отправителю и получателю и отбросить скомпроментированный ключ.

Для реализации подобных протоколов связи необходимо наладить квантовую коммуникацию между отправителем и получателем. В случае городских сетей, это можно сделать с помощью оптоволоконных линий. Также распределение ключа между неподвижными объектами можно организовать «по воздуху», с помощью лазера и детектора. Эти подходы уже были реализованы — предельные расстояния составляют около нескольких сотен километров в обоих случаях. Технику ограничивают потери в оптоволокне и рассеяние на турбулентных потоках в воздухе.

Авторы новой работы продемонстрировали принципиальную возможность квантового распределения ключа между летящим самолетом и наземной станцией. Для приема и передачи сигнальных фотонов физики использовали пару моторизированных телескопов. Приемник был установлен на самолете «Твин оттер», облетавшем наземную станцию по дуге или по прямой линии на высоте 1,6 километра. Номинальные расстояния между источником и приемником колебались от 3 до 10 километров. В установке были предприняты методы защиты от простейших атак, в том числе, «Троянских коней».

Всего самолет выполнил 14 полетов рядом с наземной станцией со скоростью около 200-250 километров в час. Ровно в половине случаев исследователям удалось установить квантовый канал связи и в шести из них — сгенерировать секретный ключ. Время квантовой связи колебалось от 30 секунд до четырех с половиной минут, максимальный размер секретного ключа составил 867 килобит.

На подготовку эксперимента у ученых ушло почти восемь лет. Ранее похожий эксперимент был поставлен в Германии, однако на самолете находился источник фотонов, а не приемник. По словам физиков, именно в новой постановке эксперимента ключ можно будет успешно генерировать для связи между спутником и самолетом. Преимущество использования спутника в отсутствии естественных помех между отправителем и получателем, например, гораздо более разреженная среда.

Microsoft работает над созданием квантового компьютера

Microsoft объявила в июне 2017 года о проведении разработок в области создания квантового компьютера. Подобные машины способны перевернуть всю индустрию, так как позволят обрабатывать за секунды объемы данных, на анализ которых сейчас ушли бы годы. Технология, использующаяся в них, основана на кубитах (квантовых битах), которые могут одновременно находиться в двух состояниях – 0 и 1, в то время как обычные биты находятся только в одном из них. В будущем эта технология повлияет на такие области как криптография и сверхзащищенная связь, а также моделирование климата и поиск темной материи[8].

Проект по созданию квантового компьютера Microsoft возглавляет Тодд Холмдал (Todd Holmdahl), ранее входивший в число руководителей команд разработчиков Kinect, HoloLens и Xbox. Сейчас он говорит о квантовых вычислениях, как о новом направлении в бизнесе, а не теоретических или исследовательских проектах. И он уверен, что именно Microsoft станет пионером в этой области, внедрив квантовые технологии в свои облачные платформы.

Команда под руководством Тодда Холмдала, входящая в состав недавно созданной Microsoft AI и Research Group, будет работать как над аппаратной так и программной частями квантового компьютера. «Подобно классическим высокопроизводительным вычислениям, нам нужно не только оборудование, но и оптимизированное программное обеспечение», - комментирует Матиас Тройер (Matthias Troyer), профессор вычислительной физики Швейцарской высшей технической школы Цюриха, специально приглашенный для участия в проекте исследовательской группы Microsoft.

В Microsoft уверены, что знания, накопленные Microsoft Research достигли того уровня, который позволит создать настоящий прорыв в создании квантового компьютера. На вопрос о том, когда Microsoft сможет построить свой первый топологический кубит, Холмдал, которому сейчас 52 года, не дает точного ответа. Однако отметил, что скоро он уходит на пенсию и событие произойдет до этого момента.

В Казани испытали «квантовый телефон»

Сотрудники Казанского авиационного института (КАИ) и Санкт–Петербургского НИУ информационных технологий, механики и оптики (ИТМО) представили в начале 2017 года в Казани квантовую сеть, состоящую из четырех узлов, и провели ее испытания, в частности, используя ее как телефон, который невозможно прослушать[9].

Такие сети начали появляться в России в 2014 году: первые проекты были осуществлены столичными университетами. Пилотные тестирования казанской сети были проведены в августе 2016 года. Сейчас ученые доработали сеть, и она полностью функционирует. Два узла находятся в КАИ, еще два – на берегах реки Казанки. В рамках испытаний по каналам сети передавались файлы и различные команды, затем для тестирования аудиосвязи сеть использовали в качестве телефона.

По словам директора Казанского квантового центра Сергея Моисеева, ученые КАИ уже 15 лет изучают квантовую память, а их коллеги из ИТМО заинтересовались их разработками для создания сети коммуникаций на больших расстояниях. Сейчас ученые планируют улучшать скорость и дальность квантовых каналов, а также искать новые практические применения технологии.

Китайский квантовый вычислитель «обогнал» первый компьютер человечества

Физики из Китайского научно-технологического университета (Шанхай), Университета Вюрцбурга и Сент-Эндрюсского университета усовершенствовали работу одного из видов квантовых вычислителей — бозонного сэмплера. По словам авторов, теперь устройство превосходит ENIAC (первый универсальный классический компьютер) примерно в 220 раз в определенном классе задач. Ученые полагают, что бозонные сэмплеры смогут в ближайшее время продемонстрировать превосходство квантовых систем над современными классическими компьютерами. Исследование опубликовано в журнале Nature Photonics, кратко о нем сообщает агентство Синьхуа[10].

Считается, что квантовые компьютеры способны значительно превзойти обычные, классические вычислители — это позволит решать задачи, ранее недоступные для ученых. Например, очень сложными для компьютеров оказываются вычисления свойств различных молекул — они основаны на законах квантовой механики. Однако превосходство квантовых вычислителей над традиционными системами было продемонстрировано лишь частично. Так, в конце 2015 года компания Google показала, что системы квантового отжига D-Wave могут многократно обгонять компьютеры при решении специально созданных задач оптимизации.

Для квантовых компьютеров производительность и ускорение, по сравнению с классическими системами напрямую зависит от числа кубитов — квантовых битов, существующих в суперпозиции состояний «нуля» и «единицы». Ученые ожидают, что квантовым компьютерам потребуется около 50 кубитов чтобы достичь превосходства — сейчас в лабораторных устройствах количество кубитов не превышает 10-15. Однако в некоторых специальных квантовых вычислителях можно обойтись меньшим количеством контролируемых квантовых частиц — например, для бозонных сэмплеров достаточно 20-30 фотонов.

Бозонные сэмплеры — это вычислители, с помощью которых можно быстро строить распределение случайных величин. В них несколько фотонов движутся по разветвляющимся и пересекающимся оптическим путям, интерферируя между собой. Подробнее о них можно прочитать в новости о предыдущем результате этой научной группы — запутывании сразу 10 фотонов для сэмплера. Среди применений устройства — расчет колебательных спектров молекул, необходимый, например, для анализа химического состава материалов

Помимо количества фотонов, участвующих в работе сэмплера, на скорость его работы также влияет и частота считывания состояний фотонов. В новой работе ученые смогли значительно ее увеличить — примерно в 24 тысячи раз по сравнению с предыдущими экспериментами. По словам авторов, ключевым для достижения результата стала разработка высококачественных однофотонных источников на основе нанокристаллов полупроводников. Эти модули возбуждаются с помощью пикосекундных импульсов лазера (длящихся триллионную долю секунды) и генерируют 25,6 миллиона поляризованных одиночных фотонов в секунду, что является лучшим показателем по яркости в мире.

В качестве оптического стола с различными оптическими путями для фотонов авторы использовали программируемую интегральную оптическую схему — она определяла распределение, которое генерировал сэмплер. В нее входило 36 светоделителей — полупрозрачных зеркал. Ученые проверили работу устройства с тремя, четырьмя и пятью фотонами, создающими распределение. Для трехфотонных устройств частота генерации составила около пяти тысяч герц (в предыдущих работах эта величина не превышала двух десятых герца). По словам авторов, если использовать в установке однофотонные детекторы на сверхпроводящих нанонитях, то эту величину можно будет дополнительно увеличить в 26 раз.

С ростом скорости считывания и генерации распределений у физиков возникает возможность использовать большее количество фотонов в бозонном сэмплере. Так, если в прошлой работе с 10-фотонным семплером частота генерации составляла 11 штук в час, то в новой установке частоты того же порядка можно будет достигнуть уже с 14 фотонами. По словам авторов, если усовершенствовать схему генерации одиночных фотонов, ускорив их генерацию почти на 75 процентов, то можно будет ожидать скорости считывания 20-фотонных событий в 130 штук в час.

Физики сравнивают производительность новой системы с первым компьютером, созданном человеком, — ENIAC. По оценкам ученых, созданная схема трехфотонного сэмплинга превосходит скорость решения той же задачи с помощью ENIAC в 220 раз. Авторы утверждают, что создали первый вычислитель на одиночных фотонах, который смог обогнать классический компьютер.

IBM запустила первый в мире сервис квантовых вычислений

В марте 2017 года IBM анонсировала, как утверждает компания, первый в мире коммерческий сервис квантовых вычислений. Программа под названием IBM Q 50-кубитный квантовый процессор будет запущена в облачной инфраструктуре IBM Cloud. Подробнее здесь.

2016

Ученые смогли передать информацию с помощью одного фотона

Ученые Принстонского университета разработали устройство, позволяющее одному электрону передавать квантовую информацию фотону. Исследование было опубликовано в конце 2016 года в журнале Science и может стать настоящим прорывом в сфере квантовых компьютерных технологий[11].

«Теперь у нас есть возможность непосредственно передавать квантовое состояние фотону. Раньше это было невозможно сделать с помощью полупроводниковых приборов, поскольку квантовое состояние утрачивалось до того, как успевало передать информацию», - пояснил ученый Принстонского университета Сяо Ми.

Смотрите подробнее - Фотонная интегральная схема (ФИС)

Исследовательский проект Microsoft

В ноябре 2016 года стало известно о том, что Microsoft разрабатывает квантовый компьютер. Для этого компания сформировала отдельный исследовательский проект, который возглавил ветеран Microsoft Тодд Холмдал (Todd Holmdahl), входивший в число руководителей команд разработчиков Kinect, HoloLens, и Xbox.

Квантовые вычисления предполагают, что использующие их компьютерные системы могут находиться в двух состояниях одновременно. Если традиционные ПК записывают биты информации последовательно (в состояниях нуль или единица), то квантовые могут выполнять несколько вычислений параллельно, кодируя два значения сразу.

Тодд Холмдал — глава проекта Microsoft по разработке квантового компьютера

Microsoft намерена создать "топологический" квантовый компьютер с двухмерными частицами, называемыми энионами, образующими трехмерные переплетения с двумя пространственными измерениями энионов и временем. Компания планирует использовать такие системы в проектах искусственного интеллекта, клинических исследованиях, моделировании климатических условий и др.

Помимо Тодда Холмдала, в команду исследователей квантовых вычислений Microsoft также вошли известные специалисты в этой области — профессоры Лео Кувенховен (Leo Kouwenhoven) из Дельфтского технологического университета, Чарльз Маркус (Charles Marcus) из Университета Копенгагена, Дэвид Рейлли (David Reilly) из Университета Сиднея и Маттиас Тройер (Matthias Troyer) из Швейцарского федерального технологического института.

Концепцией квантовых вычислений Microsoft заинтересовалась еще в 2005 году, создав тогда исследовательскую лабораторию Station Q под руководством математика Майкла Фридмана (Michael Freedman). В 2015 году Microsoft представила симулятор LIQUi|> (Language-Integrated Quantum Operations), позволяющий любому человеку изучать возможности квантовых вычислений. [12]

Китай построит новую квантовую коммуникационную линию

Китай планирует к концу 2017 года построить новую квантовую коммуникационную линию длиной более 300 километров, пишет газета China Daily со ссылкой на китайскую аэрокосмическую компанию (CASIC).

Строительство линии, которая соединит между собой город Ухань и Хэфэй, начнется в ближайшее время. Как отметил представитель CASIC У Сяофэн, линия будет использоваться правительственными структурами, а затем станет доступна местному бизнесу. Объем инвестиций оценивается в 29 миллионов долларов. Позднее эта линия будет соединена с линией между Пекином и Шанхаем, открытие которой запланировано на конец 2016 года.

В Китае в ноябре 2016 года открылась самая протяженная в мире квантовая коммуникационная линия, ее длина составляет 712 километров. Она соединяет между собой город Хэфэй в провинции Аньхой и Шанхай. Она является частью проекта квантовой коммуникационной линии протяженностью в 2 тысячи километров, создание которой началось в 2013 году. На линии расположены 11 наземных станций.

Китай начал разработку спутника квантовой связи в 2011 году. В середине августа был успешно осуществлен запуск первого в мире спутника квантовой связи «Мо-цзы» (Micius).

Как заявил ранее академик Китайской академии наук Пань Цзяньвэй, все системы спутника работают исправно. Отмечалось, что «Мо-цзы» после трехмесячного тестирования на орбите, будет сдан в эксплуатацию во второй половине ноября. До этого Пань Цзяньвэй также заявил, что Китай может к 2030 году создать глобальную сеть квантовой связи.

С начала XX века ученые разрабатывают методики шифрования и безопасной передачи информации. Они обладают двумя ключевыми недостатками — их можно взломать при приложении достаточных вычислительных мощностей (к примеру, квантового компьютера), или же информацию можно извлечь, «подслушав» её передачу по каналу данных.

Так называемые квантовые сети решают обе эти проблемы за счет того, что фундаментальное положение квантовой физики — принцип неопределенности Гейзенберга — не позволяет «третьему лишнему» считывать информацию с канала данных и подбирать к ней ключ.

Квантовую связь испытали между двумя городами

5 октября 2016 года пресс-служба Фонда перспективных исследований сообщила об испытаниях системы квантовой коммуникации между двумя городами Московской области. Участники проекта: МГУ, Ростелеком и Фонд перспективных исследований.

Трехнедельные испытания автоматической системы квантового распределения криптографических ключей на основе стандартных линий связи ПАО «РОСТЕЛЕКОМ» проведены в Московской области: между городами наладили обмен сообщениями, зашифрованными посредством квантовых технологий. Квантовая связь работала между Ногинском и Павловским Посадом на оптоволоконной линии длиной 32 км.

Основная цель испытаний - демонстрация возможностей долговременной и устойчивой работы системы квантового распределения криптографических ключей на основе стандартной инфраструктуры. Испытания показали стабильность работы системы на оптоволоконных линиях ПАО «Ростелеком» между городами Московской области, Ногинском и Павловским Посадом, в автоматическом режиме.

« Проведенные испытания имеют принципиальное значение для развития всей отрасли квантовых технологий. В ходе испытаний были продемонстрированы «три кита» современной квантовой связи. Во-первых, осуществлено распределение симметричных криптографических ключей в соответствии с ГОСТ. Распределение ключей происходило в режиме квантовой сети, когда идентичные ключи генерировались у пар абонентов по их запросу. Во-вторых, квантовая связь осуществлялась между двумя конкретными населенными пунктами – городами Московской области. В-третьих, система работает в полностью автоматическом режиме, без участия оператора.

Сергей Кулик, руководитель лаборатории квантовых оптических технологий МГУ, профессор, член комиссии по проведению испытаний
»

Участие оператора потребовалось при первом запуске системы и настройке ее основных параметров, в зависимости, например, от расстояния между абонентскими пунктами. Все значения параметров работы системы тестируются и поддерживаются автоматически: система подстраивает их в зависимости от колебаний показателей оптоволоконной линии. Во время испытаний использовали клиент-серверный вариант системы, позволяющий добиться её долговременной и стабильной работы и минимизировать стоимость клиентского узла.

Ключи распределялись между центральным сервером и несколькими клиентскими узлами: последовательно получаемые на различных узлах, ключи специальным образом синхронизировались, что позволило абонентам напрямую обмениваться сообщениями, зашифрованными в соответствии с российским национальным стандартом. Система обеспечивает криптографические свойства, удовлетворяющие требованиям ГОСТ 28147-89.

« Система, в составе которой есть серверная станция с возможностью коммутации между 32 клиентскими узлами, использует оригинальный отечественный протокол передачи данных. Его криптографическая стойкость позволяет генерировать ключи, подходящие для использования в современных и перспективных аппаратно-программных средствах криптографической защиты информации ограниченного доступа.

Андрей Корольков, заместитель начальника управления Центра ФСБ России, член-корреспондент Академии криптографии Российской Федерации, член комиссии по проведению испытаний
»

« Демонстрация долговременной работы сетевого варианта системы квантового распределения ключей, работающей на инфраструктуре стандартных волоконно-оптических линий связи и соответствующей всем требованиям по криптографической стойкости, показывает, что в России созданы условия для внедрения этой технологии.

Муслим Меджлумов, главный архитектор по стратегии безопасности сетевых и облачных решений ПАО «Ростелеком», член комиссии по проведению испытаний
»

Квантовая сеть передачи данных

8 августа 2016 года ученые в Татарстане запустили пилотный проект многоузловой квантовой сети передачи данных. Это первый проект в России. По замыслу создателей, сеть с повышенной защитой данных объединит города республики, в первую очередь – предприятия госсектора, финансовые и научные структуры.

Авторы проекта - ученые квантового центра Казанского национального исследовательского технического университета (КНИТУ-КАИ) и Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО)[13].

Платформой для сети послужило оборудование оператора связи ПАО «Таттелеком». Квантовая криптография отличается от обычной защиты данных использованием физических методов вместо математических. Попытка взлома меняет параметры электронов или фотонов, что обеспечивает возможность обнаружения несанкционированного доступа.

Квантовая сеть объединит четыре узла на расстоянии 30-40 км друг от друга. Первый участок сети запущен в Казани, он связал два корпуса вуза.

В пилотном сегменте достигнута скорость генерации просеянных квантовых последовательностей 117 кбит/c на линии протяженностью 2,5 км – на порядок быстрее, чем в европейских сетевых проектах в области квантовой связи. В ходе экспериментов успешно продемонстрирована передача квантовых бит в оптическом канале с потерями 20 дБ, что эквивалентно расстоянию 100 км.

Ранее в России создавались только линии квантовой связи, действующие по принципу «точка-точка». К примеру, оптоволоконным кабелем соединялись вузовские корпуса в Санкт-Петербурге и банковские офисы в Москве. В случае с банковскими офисами общая длина линии 30,6 км, а процент ошибок при передаче ключа не превысил 5%.

« Мы хотим проложить сеть между Казанью и Набережными Челнами. Сейчас работаем над самим оборудованием, например, по ускорению передачи данных. Расстояние для передачи квантов составляет около 100 км. А далее новые узлы «удлиняют» сеть.
»

« Запуск пилотных участков, связывающих между собой университеты, приведёт к взрывному росту технологий и формированию новых рынков, на базе которых вырастет отечественная инфраструктура связи нового поколения.

Артур Глейм, руководитель Лаборатории квантовой информатики Международного института фотоники и оптоинформатики ИТМО и лаборатории практической квантовой криптографии Казанского квантового центра
»

Создан компактный квантовый компьютер

Группа ученых из Мэрилендского университета в Колледж-Парке в США создала компактный квантовый компьютер, который можно перепрограммировать, передает Nature[14]. Машина состоит из пяти кубитов.

Издание сообщает, что кубиты захвачены при помощи ионной ловушки и ими можно управлять лазером. Помимо того, что кубиты являются вычислительными элементами, одновременно они также - ячейки памяти.

Ученые показали, что созданный компьютер способен выполнять различные квантовые алгоритмы. Причем, при переходе от одного алгоритма к другому вносить изменения в конструкцию системы не нужно.

Создатели утверждают, что точность вычислений квантового компьютера составляет 98 процентов, что является очень высоким показателем. По словам специалистов, в будущем его можно будет масштабировать посредством подключения аналогичной конструкции, что позволит выполнять более сложные задачи.

В России нашли способ «утрамбовать» несколько элементов квантового компьютера в один

Физики из МФТИ и Российского квантового центра разработали метод, который позволит упростить задачу создания универсального квантового компьютера – они нашли способ использовать для этого многоуровневые квантовые системы (кудиты), каждый из которых способен работать как несколько «обычных» квантовых элементов, кубитов. Профессор Владимир Манько, научный руководитель Лаборатории квантовой информации МФТИ и сотрудник ФИАН, сотрудник Российского квантового центра Алексей Федоров и его коллега Евгений Киктенко опубликовали результаты своих исследований многоуровневых квантовых систем в серии статей в журналах Physical Review A, Physics Letters A, а также Quantum Measurements and Quantum Metrology[15].

«В наших работах мы показали, что корреляции, аналогичные используемым для квантовых информационных технологий в композитных квантовых системах, имеют место и в некомпозитных системах, с которыми, как мы предполагаем, иногда оказывается легче работать. В частности, в последней работе мы предложили способ использования запутанности между внутренними степенями свободы одиночной восьмиуровневой системы для реализации протокола квантовой телепортации, ранее экспериментального реализованного для системы из трёх двухуровневых систем», - говорит Владимир Манько.

Квантовые компьютеры, которые обещают в будущем привести к революции в компьютерной технике, предполагается строить из элементарных вычислительных элементов, квантовых битов – кубитов. В то время, как элементы классических компьютеров (биты) могут находиться только в двух состояниях (логический ноль, и логическая единица), кубиты создаются на основе квантовых объектов, которые могут находиться в когерентной суперпозиции двух состояний, а значит могут кодировать промежуточные состояния между логическим нулем и единицей.

Многоуровневый кудит - кукварт

При измерении кубита мы с определенной вероятностью (определяемой законами квантовой механики) получаем либо ноль, либо единицу. Работа квантового компьютера основана на том, что начальное условие некоторой задачи записывается в начальном состоянии системы кубитов, затем данные кубиты вступают в специальное взаимодействие (определяемое конкретной задачей), и наконец, пользователь считывает ответ к задаче, производя измерение конечных состояний квантовых битов.

Квантовые компьютеры смогут решать некоторые задачи, которые сейчас абсолютно недоступны даже для самых мощных классических суперкомпьютеров. Например, для «взлома» криптографического алгоритма RSA, основанного на поиске разложения на простые множители больших чисел, обычному компьютеру для перебора вариантов потребуется время, сопоставимое с временем существования Вселенной, а квантовый может решить ее за минуты. Однако на пути квантовой революции стоит серьезное препятствие – неустойчивость квантовых состояний.

Квантовые объекты, которые используются для создания кубитов – ионы, электроны, джозефсоновские контакты, могут сохранять определенное квантовое состояние очень недолго. Но для вычислений нужно, чтобы кубиты не только сохранили состояние, но и еще и провзаимодействовали друг с другом. Физики по всему миру пытаются продлить срок жизни кубитов.

Раньше сверхпроводящие кубиты «выживали» наносекунды, а теперь их удается удержать от декогеренции уже миллисекунды – уже близко к тому времени, которое необходимо для вычислений. Но в случае с системой из десятков и сотен кубитов задача становится принципиально сложнее. Манько, Федоров и Киктенко начали решать задачу «с другого конца» – не пытаться сохранить устойчивость большой системы кубитов, а уменьшить размеры необходимой для вычислений системы. Они исследуют возможности использования для вычислений не кубитов, а кудитов – квантовых объектов, в которых число возможных состояний (уровней) больше двух (их число обозначают буквой D). Существуют кутриты с тремя состояниями, кукварты (четыре состояния) и т.д. Сейчас активно изучаются алгоритмы, в которых использование кудитов может демонстрировать преимущества по сравнению с использованием кубитов.

«Кудит с тремя-четырьмя уровнями уже может работать как система из двух «обычных» кубитов, а восьми уровней достаточно, чтобы имитировать трехкубитную систему. Поначалу мы воспринимали эту эквивалентность как математическую, которая позволяет получать новые энтропийные соотношения. Например, мы получали величину взаимной информации (меры корреляции) между виртуальными кубитами, выделенными в пространстве состояний одиночной четырехуровневой системы», – говорит Федоров.

Он и его коллеги показали, что на единственном кудите с пятью уровнями, реализованном с помощью искусственного атома, уже можно осуществлять полноценные квантовые вычисления, в частности, запустить алгоритм Дойча. Этот алгоритм предназначен для проверки значений большого числа двоичных переменных. Его можно назвать «алгоритмом поиска бракованной монеты»: представьте себе, что у вас есть множество монет, некоторые из которых бракованные – у них изображение на аверсе и реверсе совпадает. Чтобы найти такие монеты «классическими способом», вам нужно взглянуть на каждую сторону. Алгоритм Дойча предполагает, что вы «запутываете» аверс и реверс монеты, и после этого вы можете увидеть бракованную монету только один раз взглянув на нее.

Сама идея использования многоуровневых системы для эмуляции многокубитных процессоров была предложена ранее в работах российских физиков из Казанского физико-технического института. Так, например, для реализации двухкубитного алгоритма Дойча предлагалось использовать ядерный спин 3/2, имеющий четыре различных состояния. Однако экспериментальный прогресс последних лет в создании кудитов на сверхпроводящих цепях демонстрирует ряд их преимуществ. В сверхпроводящих схемах, однако, требуется уже пять уровней: последний уровень выполняет вспомогательную роль для осуществления возможности реализации полного набора всех возможных квантовых операций.

«Мы получаем существенный выигрыш, поскольку многоуровневые кудиты в определенных физических реализациях контролировать проще, чем систему из соответствующего количества кубитов, а значит мы на шаг приближаемся к созданию полноценного квантового компьютера. Многоуровневые элементы обеспечивают преимущества и в других квантовых технологиях, например, в квантовой криптографии», - говорит Федоров.

В России утвержден проект по созданию универсального квантового компьютера

28 апреля 2016 г. в Министерстве образования и науки Российской Федерации прошло совещание по вопросам организации в 2016 году совместного научно-технического проекта «Создание технологии обработки информации на основе сверхпроводящих кубитов»[16].

Данный проект станет пилотным в решении конечной цели – создании квантового компьютера. Он рассчитан на три с половиной года, суммарный объем финансирования составит более 750 млн рублей. Более 210 млн рублей будут направлены Минобрнауки России на создание необходимой для реализации проекта инфраструктуры в подведомственных вузах-исполнителях (НИТУ «МИСиС», Московский физико-технический институт (МФТИ), Новосибирский государственный технический университет (НГТУ)). Фонд перспективных исследований выделит около 340 млн рублей на проведение научных исследований в рамках проекта. Софинансирование проекта со стороны Государственной корпорации по атомной энергии «Росатом» (потребитель результатов) составит более 200 млн руб. и будет использовано на дооснащение лаборатории ВНИИА им. Н.Л. Духова (головная организация проекта).

Совещание завершилось подписанием трехстороннего соглашения о создании и поддержке совместных лабораторий. Со стороны Минобрнауки России его подписал заместитель министра образования и науки Российской Федерации Александр Повалко, Госкорпорации «Росатом» - заместитель директора дирекции по ядерному оружейному комплексу Олег Шубин, Фонда перспективных исследований – генеральный директор Андрей Григорьев.

К апрелю 2016 года участниками проекта была сформирована следующая научная база:

  • в НИТУ «МИСиС» создана Лаборатория сверхпроводящих метаматериалов под руководством проф. А.В. Устинова (в рамках реализации работ по мегагрантам (Постановление Правительства Российской Федерации от 9 апреля 2010 г. № 220);
  • в МФТИ создана Лаборатория искусственных квантовых систем под руководством проф. О.В. Астафьева (в рамках Проекта 5-100 (Постановление Правительства Российской Федерации от 16 марта 2013 г. № 211);
  • Центр коллективного пользования (в рамках ФЦП «Развитие инфраструктуры наноиндустрии в Российской Федерации»);
  • в ИФТТ РАН лаборатория Российского квантового центра (РКЦ) ИФТТ РАН (группа проф. В.В. Рязанова); *лаборатория в НГТУ (группа проф. Е.В. Ильичёва);
  • головной технологический центр создан по инициативе ВНИИА им. Н.Л. Духова совместно с МГТУ им. Н.Э. Баумана.

Головной технологический центр будет заниматься изготовлением многокубитных систем. На других участников консорциума, представляющего собой полную технологическую цепочку изготовления сверхпроводящих квантовых систем, – Московский физико-технический институт (МФТИ), Российский квантовый центр (РКЦ, Russian Quantum Center, RQC), ИФТТ РАН, Московский институт стали и сплавови Новосибирский государственный технический университет (НГТУ) – возложено решение задач по производству сверхпроводящих кубитов, измерению параметров квантовых систем в открытых линиях, разработке алгоритмов квантовых вычислений.

Проект нацелен на формирование перспективного научно-технического и технологического задела по созданию квантовых компьютеров, предназначенных, в том числе, для моделирования свойств различных материалов.

« В проекте кооперируются практически все научные организации и университеты, которые занимаются квантовыми вычислениями и технологиями. Перед ними ставятся задачи разработки технологий изготовления различных сверхпроводниковых кубитов, развития методов, техники и технологий инициализации, контроля и считывания кубитов

руководитель лаборатории ВНИИ автоматики им. Н.Л. Духова Валерий Рязанов
»

2015: Google заявила о вероятности создания квантовых компьютеров

Квантовые компьютеры никогда не выиграют у современных классических компьютеров, если не обретут способность самостоятельной коррекции ошибок, разрушающих "хрупкие" квантовые состояния их квантовых битов, кубитов. Группа компаний Google, ведущая исследования в области квантовых вычислений, продемонстрировала первую в мире систему, способную самостоятельно производить коррекцию возникающих ошибок - шаг, приближающий область квантовых вычислений к ее практической реализации[17].

Процессор квантового компьютера D-Wave, 2014

Помянутое достижение стало возможным в результате перехода в компанию Google группы ученых из Калифорнийского университета в Санта-Барбаре , осенью 2014 года. В свое время она разработала и изготовила систему квантовых сверхпроводящих схем, работающих с уровнем точности и надежности, достаточным для реализации технологии устранения ошибок.

"Это первый случай в истории информационных технологий, когда "естественные" ошибки, возникающие в результате воздействия на кубиты различных факторов окружающей среды, могут быть исправлены, - поведал Рэми Барендс (Rami Barends), инженер компании Rami Barends. - Мы создали первое квантовое устройство, способное самостоятельно исправить возникающие при его работе ошибки".

Интересующимся сферой квантовых вычислений хорошо известно - основная проблема, с которой сталкиваются создатели квантовых вычислительных систем - необходимость сохранения квантового состояния кубитов в течение длительного времени. Хрупкое квантовое состояние может нарушаться вмешательством любого, из достаточно большого набора внешних факторов, от которых отгородиться полностью не получается принципиально. Решением этой проблемы является квантовый код коррекции ошибок, основа которого - классический метод устранения ошибок, достаточно широко используемый в современной вычислительной технике.

Но главная проблема, с которой пришлось столкнуться исследователям, в том, что разработанный код коррекции не имеет возможностей обнаружения возникшей ошибки прямым способом, не нарушая квантовое состояние кубитов.

Исследователи обошли эту проблему, используя явление квантовой запутанности, при помощи которого один кубит может делиться информацией с другими кубитами посредством "призрачной" квантовой связи. Корректирующий код, включенный в состав квантовой системы, измеряет значение квантового состояния кубита, запутанного с несколькими соседними кубитами, что помогает удержать его исходное состояние неизменным.

Созданный код коррекции ошибок работает за счет использования определенного пространственного расположения кубитов, которое чем-то напоминает шахматную доску. В белых квадратах этой доски располагаются информационные кубиты, задействованные в выполнении квантовых вычислительных операций, а в черных квадратах находятся "измерительные" кубиты, используемые для коррекции ошибок, возникающих в прилежащих информационных кубитах.

Для демонстрации технологии исследователи изготовили простое устройство, состоящее из девяти кубитов, упорядоченных в виде матрицы 3 на 3 элемента. И работа этой системы, точнее, работа корректирующего кода была проверена при помощи 90 тысяч специализированных вычислительных операций, что позволило собрать необходимое количество статистических данных.

"Это послужило доказательством тому, что потраченные на теоретические исследования годы не прошли впустую и практическая реализация технологий коррекции ошибок возможна" - отметил Джулиан Келли (Julian Kelly), инженер компании Google.

Еще одно достижение: исследователи продемонстрировали, что показатели успешного устранения ошибок в квантовой системе увеличились с увеличением количества кубитов. К примеру, уровень ошибок при работе системы с пятью кубитами был в 2,7 раз меньше уровня ошибок в системе с единственным кубитом. А разница в этих уровнях между системами с одним и девятью кубитами составила чуть более 8,5 раз.

"Это захватывающая новость для сферы квантовых вычислений. Все указывает на то, что системы с большим количеством квантовых битов могут быть стабильны и не рухнут под напором лавины возникающих ошибок, - подчеркнул Джулиан Келли. - И это, в свою очередь, означает, что квантовые компьютеры, оперирующие большим количеством кубитов, все же могут быть созданы".

2013

Действующие квантовые системы

На июль 2013 года даже современные, пока еще не очень совершенные, квантовые вычислительные системы пользуются огромным интересом ведущих мировых кампаний. Так, канадскую квантовую вычислительную машину D-Wave использует оборонная компания Lockheed Martin, а в начале 2013 года D-Wave усилил вычислительные мощности Google. D-Wave не является универсальным квантовым компьютером, хотя и может быть использован в качестве основы для его разработки. D-Wave - это 512-кубитная вычислительная машина на сверхпроводящих кольцах предназначенная для решения так называемых задач комбинаторной оптимизации, например анализа генома, вариантов сворачивания белков и т.п. Google будет использовать D-Wave для проектирования систем искусственного интеллекта, способного к самообучению.

В России измерили состояние кубита

В июне 2013 года стало известно, что специалисты университетской лаборатории МИСиС в сотрудничестве с Российским квантовым центром (РКЦ) первыми в России измерили состояние кубита. Команда исследователей под руководством члена научного совета РКЦ профессора Алексея Устинова провела эксперимент по измерению состояния сверхпроводящего кубита. Ученым удалось наблюдать периодически изменяющийся сигнал кубита, а также измерить его резонансную частоту.

Сверхпроводящие кубиты представляют собой колечки сверхпроводника диаметром несколько микрон. В некоторых местах колечек есть разрывы нанометровых размеров - их называют джозефсоновскими переходами. Сверхпроводящие колечки охлаждают до очень низкой температуры с помощью смеси жидких гелия-3 и гелия-4 и помещают в сверхточно настроенное слабое магнитное поле. В результате они приобретают квантовые свойства, сходные со свойствами атомарных спинов.

Российские ученые смогли создать экспериментальный чип с 7-ю сверхпроводящими кубитами, помещенными в микроволновые резонаторы. Взаимодействие со сверхпроводящим кубитом влияет на спектр микроволнового излучения, что позволяет судить о текущем состоянии кубита, не нарушая это состояние, то есть обойти проблему декогеренции. Самый стабильный из 7 кубитов подвергался измерениям в МИСиС.

В текущем успешном эксперименте специалисты РКЦ и МИСиС продемонстрировали возможность считывания состояния отдельного сверхпроводящего кубита в симметричной суперпозиции 0 и 1. В ближайших планах следующий этап: приведение сверхпроводящего кубита в произвольно выбранное желаемое состояние. Для этого понадобится новая импульсная техника, которая будет установлена в новой лаборатории РКЦ.

2012

Достижения IBM Research

28 февраля 2012 года команда учёных подразделения IBM Research заявила о достижении прогресса в направлении квантовых вычислений, что даст инженерам возможность приступить к непосредственной работе по созданию квантового компьютера.

Этот прорыв позволит учёным снизить величины нарастания ошибок данных в процессе элементарных вычислений, сохраняя при этом целостность квантово-механических свойств квантовых битов данных, известных как кубиты.

По мнению Марка Кетчена (Mark Ketchen), руководителя группы исследований физики информации центра TJ Watson компании IBM, создание квантовых компьютеров экспоненциально увеличит мощь вычислений в сравнении с той, что доступна обычным современным процессорам.

Кубит как и обычный бит может иметь два значения: 0 или 1. Разница в том, что бит должен иметь значение либо 0, либо 1, а кубит может быть 0, 1 или совмещать эти данные. В сообщении IBM говорится, что пока ещё квантовый компьютер далёк от реальности - на его создание, возможно, уйдёт от 10 до 15 лет. Тем не менее, прогресс в снижении уровня ошибок и сохранения целостности квантово-механических свойств кубита открывает широкие возможности для экспериментов. «Мы достигли, наконец, того, что устройства работают стабильно и возможна проверка данных и коррекция ошибок. Как только этот порог пересекаешь, азарт возрастает очень сильно», - сказал Кетчен.

На фото: кремниевый чип содержащий три кубита. Чип соединяется с вводом/выводом коаксиальными проводниками (масштаб: 8х4 мм). Источник: computerworld.com

Свои достижения в области квантовых вычислений команда IBM представила на ежегодной встрече Американского Физического Сообщества (American Physical Society) 28 февраля 2012 года.

IBM не одинока в своих исследованиях квантовых вычислений. Решением аналогичных задач заняты Калифорнийский и Йельский университеты. Однако Кетчен утверждает, что только у IBM имеются ресурсы для изготовления чипов для квантовых вычислений.

В отличие от нынешних кремниевых полупроводников IBM применяет сверхпроводящие кубиты, использующие методики микронных технологий, разработанные для кремниевых технологий, но производимые на сапфировых чипах, что позволяет одним махом нарастить производство кубитов до тысяч или миллионов единиц.

По словам Кетчена, пока IBM удается достичь 95% точности операции на своих прототипах. Учёные хотят достичь точности выше 99%, так, чтобы сокращение ошибок в данных достигло точки, где их уже можно будет использовать в вычислениях с приемлемой степенью точности. «После того как уровень ошибок в данных становится достаточно маленьким, вы можете объединить несколько затворов и получить идеальный кубит, - сказал Кетчен. – Теперь всё становится понятным как на площадке, где можно что-то создать и получить правильный ответ. Имеется в виду, что теперь нам придётся серьезнее подумать о более сложных вопросах вычислений, их взаимодействии».

Квантовый компьютер на базе алмаза

Бриллианты или алмазы – неотъемлемая часть многих кинофильмов – теперь могут стать основной составляющей квантовых компьютеров. 5 апреля 2012 года всемирно известный журнал Nature опубликовал статью группы ученых из различных стран, которым удалось построить внутри алмаза работоспособный квантовый компьютер. В отличие от образцов предшественников в нем впервые удалось решить проблему нестабильной когерентности.

Как сказано в статье, для кодирования информации в виде квантовых битов или кубитов ученые задействовали природные дефекты кристаллической решетки алмаза. В отличие от привычных битов в современных компьютерах кубиты способны находиться не только в состояниях 0 или 1, но и в суперпозиции (проще говоря, одновременно в состояниях 0 и 1). Последний вариант до недавнего времени считался нестабильным, и вычислительные элементы ранее существующих прототипов квантовых компьютеров имели тенденцию быстро возвращаться из суперпозиции в классические состояния. Следствием так называемой нестабильной когерентности являются шумы и ошибки, которые приводят к резкому снижению надежности работы таких устройств.

Другими словами, обозначенный выше негативный эффект нужно стремиться минимизировать любой ценой. Использование твердого кристалла (в данном случае алмаза) в качестве рабочего тела квантового компьютера позволило добиться более стабильных состояний суперпозиции. Причина лежит на поверхности – спин ядра более стабилен, чем спин электрона, на который ориентировались раньше. По словам профессора Даниэля Лидара (Daniel Lidar), одновременно занимающего должности в USC Viterbi School of Engineering и USC Dornsife College of Letters, Arts and Sciences, характерное время переключения состояний в ядрах измеряется миллисекундами, и это очень много. Электроны куда проворнее, однако состояние суперпозиции в вычислительных системах на их основе разрушить гораздо легче.

Смотрите также

Примечания

  1. Создан самый большой квантовый компьютер в истории
  2. Австралийские ученые находятся на пороге квантового Интернета
  3. Начал работу первый в мире невзламываемый спутник с квантовым шифрованием
  4. КНР запустила первый в мире спутник квантовой связи
  5. Airborne demonstration of a quantum key distribution receiver payload
  6. Flash Physics: Quantum cryptography for aircraft, AI boosts X-ray probe, cold nebula born in stellar collision
  7. Между землей и самолетом впервые наладили квантовую связь
  8. Microsoft работает над созданием квантового компьютера
  9. В Казани испытали «квантовый телефон»
  10. Китайский квантовый вычислитель «обогнал» первый компьютер человечества
  11. Ученые смогли передать информацию с помощью одного фотона
  12. Microsoft doubles down on quantum computing bet
  13. В России запущен «квантовый интернет»
  14. Создан компактный квантовый компьютер
  15. Ссылки: E.O. Kiktenko, A.K. Fedorov, O.V. Man’ko, and V.I. Man’ko. Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities // Physical Review A 91, 042312 (2015), arXiv:1411.0157. E.O. Kiktenko, A.K. Fedorov, A.A. Strakhov, and V.I. Man’ko. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits // Physics Letters A 379, 1409–1413 (2015), arXiv:1503.01583. E.O. Kiktenko, A.K. Fedorov, and V.I. Man’ko. Teleportation in an indivisible quantum system // Quantum Measurements and Quantum Metrology 3, 13–19 (2016), arXiv:1512.05168.
  16. Минобрнауки России, Росатом и Фонд перспективных исследований подписали трехстороннее соглашение по созданию и поддержке совместных лабораторий по развитию и практическому использованию технологий квантовых вычислений
  17. Компания Google начинает внедрять первые технологии коррекции ошибок в область квантовых вычислений